Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Allergy ; 4: 1279290, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38093814

RESUMEN

Background: Oral immunotherapy (OIT) with peanut (Arachis hypogaea) allergen powder-dnfp (PTAH; Aimmune Therapeutics) is an FDA-approved treatment to desensitize peanut allergic participants. Objective: Here we assessed shifts in IgE and IgG4 binding to peanut allergens and their epitopes recognized by United States (US) peanut allergic participants (n = 20) enrolled in phase 3 PTAH OIT clinical trials. Methods: Pre- and post- trial participant sera were collected approximately 12 months apart and tested for IgE binding to intact peanut proteins via ImmunoCAP ISAC immunoassays. IgE and IgG4 linear epitopes were identified based on binding to synthetic overlapping 15-mer linear peptides of 10 peanut allergens (Ara h 1-11) synthesized on microarray slides. Results: Statistically significant decreases in IgE binding were identified for intact Ara h 2, 3, and 6, and known and newly identified IgE epitopes were shown to exhibit shifts towards IgG4 binding post-OIT, with most linear peptides having increased IgG4 binding after treatment with PTAH. While PTAH does not seem to alter the actual peptide binding patterns significantly after one year of treatment, the IgE and IgG4 binding ratios and intensity are altered. Conclusion: At a population level, the linear IgE and IgG4 epitopes of 10 peanut allergens overlap and that increase in IgG4 with OIT results in displacement of IgE binding to both conformational and linear epitopes. Furthermore, it appears as though the increase in IgG4 is more important to achieve desensitization at the 12-month timepoint than the decrease in IgE. This type of knowledge can be useful in the identification of IgE and IgG4-binding allergen and peptide biomarkers that may indicate desensitization or sustained unresponsiveness of allergic individuals to peanut.

2.
Front Allergy ; 3: 1090114, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36698378

RESUMEN

Non-specific lipid transfer proteins (LTPs) are well studied allergens that can lead to severe reactions, but often cause oral allergy syndrome in the Mediterranean area and other European countries. However, studies focused on LTP reactivity in allergic individuals from the United States are lacking because they are not considered major allergens. The goal of this study is to determine if differences in immunoglobulin (Ig) E binding patterns to the peanut allergen Ara h 9 and two homologous LTPs (walnut Jug r 3 and peach Pru p 3) between the US and Spain contribute to differences observed in allergic reactivity. Synthetic overlapping 15-amino acid-long peptides offset by five amino acids from Ara h 9, Jug r 3, and Pru p 3 were synthesized, and the intact proteins were attached to microarray slides. Sera from 55 peanut-allergic individuals from the US were tested for IgE binding to the linear peptides and IgE binding to intact proteins using immunofluorescence. For comparison, sera from 17 peanut-allergic individuals from Spain were also tested. Similar IgE binding profiles for Ara h 9, Jug r 3, and Pru p 3 were identified between the US and Spain, with slight differences. Certain regions of the proteins, specifically helices 1 and 2 and the C-terminal coil, were recognized by the majority of the sera more often than other regions of the proteins. While serum IgE from peanut-allergic individuals in the US binds to peptides of Ara h 9 and its homologs, only IgE from the Spanish subjects bound to the intact LTPs. This study identifies Ara h 9, Jug r 3, and Pru p 3 linear epitopes that were previously unidentified using sera from peanut-allergic individuals from the US and Spain. Certain regions of the LTPs are recognized more often in US subjects, indicating that they represent conserved and possible cross-reactive regions. The location of the epitopes in 3D structure models of the LTPs may predict the location of potential conformational epitopes bound by a majority of the Spanish patient sera. These findings are potentially important for development of peptide or protein-targeting diagnostic and therapeutic tools for food allergy.

3.
Foods ; 8(12)2019 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-31771108

RESUMEN

Oral allergy syndrome (OAS) describes an allergic reaction where an individual sensitized by pollen allergens develops symptoms after eating certain foods. OAS is caused by cross-reactivity among a class of proteins ubiquitous in plants called pathogenesis related class 10 (PR-10) proteins. The best characterized PR-10 protein is Bet v 1 from birch pollen and its putative function is binding hydrophobic ligands. We cloned a subset of seven recombinant PR-10 proteins from pollens, peanuts, and hazelnuts and developed a standard purification method for them. Immunoglobulin E (IgE) binding of purified PR-10 proteins was analyzed by ImmunoCAP ISAC microarray and enzyme-linked immunosorbent assays (ELISAs) with sera from allergic patients. We investigated the binding activities of PR10s by testing 16 different ligands with each protein and compared their secondary structures using circular dichroism (CD). The PR-10s in this study had very similar CD spectra, but bound IgE with very different affinities. All seven proteins showed a similar pattern of binding to the polyphenol ligands (resveratrol, flavonoids, and isoflavones) and variable binding to other potential ligands (fatty acids, sterols, and plant hormones). We suggest our protocol has the potential to be a near-universal method for PR-10 purification that will facilitate further research into this important class of panallergens.

4.
Foods ; 3(4): 642-657, 2014 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-28234343

RESUMEN

Allergic reactions to food are on the rise worldwide and there is a corresponding increase in interest to understand the molecular mechanisms responsible. Peanut allergies are the most problematic because the reaction often persists into adulthood and can be as severe as anaphylaxis and death. The purpose of the work presented here was to develop a reproducible method to produce large quantities of pure recombinant Ara h 1(rAra h 1) that will enable standardization of immunological tests for patients and allow structural and immunological studies on the wild type and mutagenized forms of the protein. Ara h 1 is initially a pre-pro-protein which, following two endoproteolytic cleavages, becomes the mature form found in peanut. The mature form however has flexible regions that make it refractory to some structural studies including crystallography. Therefore, independent purification of the mature and core regions was desirable. Expression constructs were synthesized cDNA clones for each in a pET plasmid vector without tags. Codons were optimized for expression in E. coli. High-level expression was achieved in BL21 strains. Purification to near homogeneity was achieved by a combination of ammonium sulfate precipitation and ion exchange chromatography. The purified rAra h 1 was then compared with natural Ara h 1 for IgE binding. All patients recognized both the folded natural and rAra h 1, but the IgE binding to the rArah1 was significantly reduced in comparison to the natural allergen, which could potentially make it useful for immunotherapeutic purposes.

5.
J Biol Chem ; 288(52): 36890-901, 2013 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-24253038

RESUMEN

The incidence of peanut allergy continues to rise in the United States and Europe. Whereas exposure to the major allergens Ara h 1, 2, 3, and 6 can cause fatal anaphylaxis, exposure to the minor allergens usually does not. Ara h 8 is a minor allergen. Importantly, it is the minor food allergens that are thought to be responsible for oral allergy syndrome (OAS), in which sensitization to airborne allergens causes a Type 2 allergic reaction to ingested foods. Furthermore, it is believed that similar protein structure rather than a similar linear sequence is the cause of OAS. Bet v 1 from birch pollen is a common sensitizing agent, and OAS results when patients consume certain fruits, vegetables, tree nuts, and peanuts. Here, we report the three-dimensional structure of Ara h 8, a Bet v 1 homolog. The overall fold is very similar to that of Bet v 1, Api g 1 (celery), Gly m 4 (soy), and Pru av 1 (cherry). Ara h 8 binds the isoflavones quercetin and apigenin as well as resveratrol avidly.


Asunto(s)
Alérgenos/química , Antígenos de Plantas/química , Arachis , Proteínas de Plantas/química , Alérgenos/genética , Alérgenos/inmunología , Antígenos de Plantas/genética , Antígenos de Plantas/inmunología , Apium/química , Apium/genética , Apium/inmunología , Betula/química , Betula/genética , Betula/inmunología , Hipersensibilidad a los Alimentos/genética , Hipersensibilidad a los Alimentos/inmunología , Humanos , Proteínas de Plantas/genética , Proteínas de Plantas/inmunología , Unión Proteica , Estructura Terciaria de Proteína , Quercetina/química , Glycine max/química , Glycine max/genética , Glycine max/inmunología , Homología Estructural de Proteína
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...